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ON THE EXPONENTIAL CONVERGENCE TO A

LIMIT OF SOLUTIONS OF PERTURBED LINEAR

VOLTERRA EQUATIONS

JOHN A. D. APPLEBY, SIOBHÁN DEVIN, AND DAVID W. REYNOLDS

Abstract. We consider a system of perturbed Volterra integro-
differential equations for which the solution approaches a nontrivial
limit and the difference between the solution and its limit is inte-
grable. Under the condition that the second moment of the kernel
is integrable we show that the solution decays exponentially to its
limit if and only if the kernel is exponentially integrable and the
tail of the perturbation decays exponentially.

1. Introduction

In this paper we study the exponential decay of the solution of

x′(t) = Ax(t) +

∫ t

0

K(t − s)x(s) ds + f(t), t > 0,(1.1a)

x(0) = x0,(1.1b)

to a constant vector. Here the solution x is a vector-valued function
on [0,∞), A is a real matrix, K is a continuous and integrable matrix-
valued function on [0,∞) and f is a continuous and integrable vector-
valued function on [0,∞).

The solution of (1.1) can be written in terms of the solution of an
unperturbed version of the equation. This unperturbed equation is
given by

R′(t) = AR(t) +

∫ t

0

K(t − s)R(s) ds, t > 0,(1.2a)

R(0) = I,(1.2b)

where the matrix–valued function R is known as the resolvent or fun-
damental solution of (1.1). The representation of solutions of (1.1) in
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terms of R is given by the variation of constants formula

x(t) = R(t)x0 +

∫ t

0

R(t − s)f(s) ds, t ≥ 0.

For this and other reasons, the asymptotic behaviour of R has long
been a topic of study, and it is well known that uniform asymptotic
stability for (1.1a) is associated with the solution R of (1.2) being in-
tegrable. In this case it is interesting to understand the relationship
between the rate of decay of the kernel, and the rate of decay of solu-
tions. Authors who have shown that some sort of exponential decay in
the kernel can be identified with exponential decay of the resolvent in-
clude Murakami [8, 9] and Appleby and Reynolds [2]. Murakami shows
that the exponential decay of the solution of (1.2) is equivalent to an
exponential decay property on the kernel K under the restriction that
none of the elements of K change sign on [0,∞). A condition of this
type will be employed in this paper to identify exponential convergence.
In a similar spirit, various authors have identified decay conditions on
K which give rise to particular decay properties in the resolvent. For
example Burton, Huang and Mahfoud [3] have shown that the existence
of the “moments” of the kernel can be identified with the existence of
the moments of the solution. Appleby and Reynolds [1] have stud-
ied a type of non-exponential decay of solutions (called subexponential
decay) which can in certain circumstances be identified with the subex-
ponential decay of the kernel. Jordan and Wheeler [5] and Shea and
Wainger [10] have studied the relationship between the existence of the
kernel in a certain weighted Lp-space and the existence of the solution
in such spaces.

The case where the solutions of (1.2) are neither integrable, nor
unstable, has also been considered. Krisztin and Terjéki [6] studied this
case and determined conditions under which R(t) converges to a limit
R∞, which need not be trivial, as t → ∞. In addition to determining
a formula for R∞, they showed that the condition

∫
∞

0
t2‖K(t)‖ dt < ∞

is crucial. MacCamy and Wong [7] dealt with a nonlinear version of
(1.1). They showed that if the kernel and the perturbation satisfy an
exponential decay constraint, then x converges to a nontrivial limit x∞

exponentially fast.
In this paper we consider the case where the resolvent of (1.1) is

not integrable. In the first instance, we find an equivalence between
the exponential decay property of t 7→ R(t) − R∞ and an exponential
decay property of the kernel; we also show for solutions of (1.1) that the
exponential decay of t 7→ x(t) − x∞ can be identified with exponential
decay in the kernel and the perturbation.
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2. Mathematical Preliminaries

We introduce some standard notation. We denote by R the set of
real numbers. Let Mn(R) be the space of n × n matrices with real
entries, and I be the identity matrix. We denote by diag(a1, a2, ..., an)
the n×n matrix with the scalar entries a1, a2, ..., an on the diagonal and
0 elsewhere. For B = (bij) ∈ Mn(R) we define ‖B‖ =

∑n

i=1

∑n

j=1 |bij|.

All other norms on Mn(R) are equivalent to ‖ · ‖. If J is an interval
in R and V a finite dimensional normed space, we denote by C(J, V )
the family of continuous functions φ : J → V . The space of Lebesgue
integrable functions φ : (0,∞) → V will be denoted by L1((0,∞), V ).
The convolution of F and G is denoted by F ∗ G and defined by

(F ∗ G)(t) =

∫ t

0

F (t − s)G(s)ds, t ≥ 0.

We denote by N the set of natural numbers. We denote by C the set
of complex numbers; the real part of z in C being denoted by Re z and
the imaginary part by Im z. If B : [0,∞) → Mn(R) then the Laplace
transform of B is formally defined to be

B̂(z) =

∫
∞

0

B(t)e−ztdt.

If ε ∈ R and
∫
∞

0
‖B(s)‖e−εsds < ∞ then B̂(z) exists for Re z ≥ ε and

is analytic for Re z > ε. If B is a continuous function which satisfies
‖B(t)‖ ≤ ceβt for t > 0 then the inversion formula

B(t) = lim
T→∞

1

2πi

∫ ε+iT

ε−iT

B̂(z)eztdz =
1

2πi

∫ ε+i∞

ε−i∞

B̂(z)eztdz

holds for all ε > β.
We now make our problem precise. Throughout the paper we assume

that the function K : [0,∞) → Mn(R) satisfies

K ∈ C([0,∞), Mn(R)) ∩ L1((0,∞), Mn(R)),(2.1)

and the function f : [0,∞) → Rn satisfies

f ∈ C([0,∞), Rn) ∩ L1((0,∞), Rn).(2.2)

It is convenient to define the tail of the kernel K as

K1(t) =

∫
∞

t

K(s) ds, t ≥ 0,(2.3)

and the tail of the perturbation f as

f1(t) =

∫
∞

t

f(s) ds, t ≥ 0.(2.4)
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The existence of K1 and f1 is assured by the integrability of K and f

respectively. We define the function t 7→ x(t; x0, f) to be the unique
solution of the initial value problem (1.1). Under the hypothesis (2.1),
it is well-known that (1.2) has a unique continuous solution R, which
is continuously differentiable. Moreover the solution of (1.1) for any
initial condition x0 is given by

x(t; x0, f) = R(t)x0 + (R ∗ f)(t), t ≥ 0.(2.5)

Where x0 and f are clear from the context we omit them from the
notation.

A fundamental result on the asymptotic behaviour of the solution of
(1.1) is the following theorem due to Grossman and Miller [4]; under
(2.1) the resolvent R of (1.2) is integrable if and only if

det[zI − A − K̂(z)] 6= 0, for Re z ≥ 0.(2.6)

In this paper we consider the case where the solution of (1.1) ap-
proaches a constant vector x∞ which need not be trivial, and so (2.6)
does not necessarily hold.

3. Discussion of Results

In this section we explain the connection between the results on
exponential decay presented by Murakami in [8, 9] and those here.
Murakami obtained the following result in the case where the solutions
of (1.2) are integrable.

Theorem 3.1. Let K satisfy (2.1). Suppose the resolvent R of (1.2)
satisfies

R ∈ L1((0,∞), Mn(R)).(3.1)

If

each entry of K does not change sign on [0,∞),(3.2)

then the following are equivalent;

(i) There exists a constant α > 0 such that
∫

∞

0

‖K(s)‖eαsds < ∞.(3.3)

(ii) There exist constants c1 > 0 and β1 > 0 such that

‖R(t)‖ ≤ c1e
−β1t, t ≥ 0.(3.4)

In this paper we begin by considering the case where the solution of
(1.2) approaches a constant matrix.
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Theorem 3.2. Let K satisfy (2.1) and
∫

∞

0

t2‖K(t)‖dt < ∞.(3.5)

Suppose there exists a constant matrix R∞ such that the solution R of
(1.2) satisfies

R(·) − R∞ ∈ L1((0,∞), Mn(R)).(3.6)

If

each entry of K does not change sign on [0,∞),(3.7)

then the following are equivalent;

(i) There exists a constant α > 0 such that
∫

∞

0

‖K(s)‖eαs ds < ∞.(3.8)

(ii) There exist constants β2 > 0 and c2 > 0 such that

‖R(t) − R∞‖ ≤ c2e
−β2t, t ≥ 0.(3.9)

We can readily see the similarities between Theorem 3.1 and Theo-
rem 3.2: the hypotheses (3.1) and (3.2) in Theorem 3.1 are identical to
(3.6) and (3.7) in Theorem 3.2; moreover, the equivalence between (3.3)
and (3.4) in Theorem 3.1 is mirrored by the equivalence between (3.8)
and (3.9). The hypothesis in Theorem 3.2 which has no counterpart in
Theorem 3.1 is (3.5); however, as we mention later, this hypothesis is
natural and sometimes indispensible in the case R∞ 6= 0.

It is possible to obtain results comparable to Theorem 3.2 for the
solution of the perturbed equation (1.1). More precisely, it is possible
to show that the exponential decay of x − x∞ is equivalent to the
exponential decay of the tail of the perturbation and the exponential
integrability of the kernel. The following theorem makes this precise.

Theorem 3.3. Let K satisfy (2.1) and (3.5), f satisfy (2.2), and f1

be defined by (2.4). Suppose that for all x0 there is a constant vector
x∞(x0, f) such that the solution t 7→ x(t; x0, f) of (1.1) satisfies

x(· ; x0, f) − x∞(x0, f) ∈ L1((0,∞), Rn).(3.10)

If K satisfies (3.7) the following are equivalent;

(i) There exists α > 0 such that statement (i) of Theorem 3.2 holds
and there exist constants γ > 0, c3 > 0 independent of x0 such
that

‖f1(t)‖ ≤ c3e
−γt, t ≥ 0.(3.11)
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(ii) For each x0 the solution t 7→ x(t; x0, f) satisfies

‖x(t) − x∞‖ ≤ c4e
−β3t, t ≥ 0,(3.12)

for some β3 > 0 independent of x0, and c4 = c4(x0) > 0.

Murakami considered the case where the resolvent of (1.2) is inte-
grable, which forces R(t) → 0 as t → ∞. In this paper, we consider
the case where the solutions of (1.1) approach a constant vector, which
may not necessarily be trivial, in which case the solution is not inte-
grable. As a result it is not possible to apply Murakami’s method of
proof directly to our equation. Instead, we find it is necessary to appeal
to a result of Krisztin and Terjéki [6] to obtain appropriate hypotheses
for Theorem 3.2 and Theorem 3.3.

Before citing the relevant results from [6], we introduce some notation
used there and adopted hereinafter. We let M = A+

∫
∞

0
K(s)ds and T

be an invertible matrix such that T−1MT has Jordan canonical form.
Let ei = 1 if all the elements of the ith row of T−1MT are zero, and
ei = 0 otherwise. Put P = Tdiag(e1, e2, ..., en)T−1 and Q = I −P . We
now state the relevant theorem.

Proposition 3.4. If K satisfies (3.5) and the resolvent R of (1.2)
satisfies (3.6) then

det[zI − A − K̂(z)] 6= 0 for Re z ≥ 0 and z 6= 0

and

det

[
P − M −

∫
∞

0

∫
∞

s

PK(u)duds

]
6= 0;(3.13)

moreover

R∞ =

[
P − M −

∫
∞

0

∫
∞

s

PK(u)duds

]
−1

P.(3.14)

Krisztin and Terjéki’s result not only suggests the appropriate hy-
potheses for our theorems, but guarantees the existence of the constant
matrix R∞ as well as giving a formula for it. We note that under as-
sumptions (3.5) and (3.6) that (2.6) fails at z = 0 if R∞ 6= 0.

4. Preparatory Work

In order to prove Theorem 3.2 and Theorem 3.3 we must reformu-
late (1.2) as was done in Theorem 2 of [6]. In order to make this
reformulation precise we state the following lemma.

Lemma 4.1. Suppose that (2.1), (3.5), and (3.6) hold. Then

Ŷ (z) + F̂ (z)Ŷ (z) = Ĝ(z) Re z ≥ 0,(4.1)
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where F̂ (z) is defined for Re z ≥ 0 and z 6= 0 by

F̂ (z) =
1

z
P (K̂(0) − K̂(z)) −

1

z + 1
Q(I + A + K̂(z))(4.2)

and

F̂ (0) = −Q(I + A + K̂(0)) − PK̂ ′(0);(4.3)

and Ĝ(z) is defined for Re z ≥ 0 and z 6= 0 by

(4.4) Ĝ(z) =
1

(z + 1)
Q

(
I − (I + A + K̂(z))R∞

)

−
1

z

(
PK̂ ′(0) + QK̂(0) − QK̂(z)

)
R∞ −

1

z2
P (K̂(0) − K̂(z))R∞,

and

(4.5) Ĝ(0) = Q −

(
Q(I + A) −

1

2
PK̂ ′′(0) − QK̂ ′(0) + QK̂(0)

)
R∞.

Proof. As conditions (3.5) and (3.6) hold we know from Proposition
3.4 that (3.14) holds. We now employ an idea used in [6, Theorem
2]. Define the function Φ by Φ(t) = P + e−tQ for t ≥ 0. Taking the
convolution of each side of (1.2) with Φ, we get Φ ∗ R′ = Φ ∗ (AR) +
(Φ ∗ K) ∗ R, which after integration by parts becomes

R(t) + (F ∗ R)(t) = Φ(t), t ≥ 0,(4.6)

where

F (t) = −e−t(Q + QA) − (e ∗ QK)(t) + P

∫
∞

t

K(u)du, t ≥ 0,

and the function e is defined by e(t) = e−t, t ≥ 0. A further calculation
yields

Y (t) + (F ∗ Y )(t) = G(t), t ≥ 0,(4.7)

where Y (t) = R(t) − R∞ and

G(t) = e−tQ − e−t(QR∞ + QAR∞) +

∫
∞

t

∫
∞

u

PK(s)R∞ ds du

−

∫
∞

t

QK(u)R∞du − (e ∗ QKR∞)(t), t ≥ 0.

Since (2.1) holds we can take the Laplace transform of (4.7) to obtain

(4.1) where F̂ and Ĝ are given by (4.2) and (4.4) respectively for Re z >

0 and z 6= 0 and are given by (4.3) and (4.5) when z = 0. �
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Remark 4.2. If we assume that there exists a constant α > 0 such
that (3.8) of Theorem 3.2 holds then the functions F̂ and Ĝ defined
by (4.2) and (4.4) respectively when can be extended into the negative
half plane.

The following lemma may be extracted from [6, Theorem 2] and is
necessary in the proof of Theorem 5.1.

Lemma 4.3. If (2.1), (3.5) and (3.6) hold, then

det[I + F̂ (z)] 6= 0, Re z ≥ 0.(4.8)

The following proposition may extracted from [8, 9] and used is later
in the proof of Theorem 5.2.

Proposition 4.4. Let K be a continuous integrable function such that
no entry of K changes sign on [0,∞). Suppose that there is a con-
tinuous function z 7→ B(z) defined for |Re z| ≤ α1 and analytic for

|Re z| < α1, where α1 > 0. If K̂(z) = B(z) for all 0 ≤ Re z < α1, then
∫

∞

0

‖K(s)‖eα1s ds < ∞.

The proof is identical in all important details to that of Theorem 2
in [8].

5. Proof of Theorem 3.2

Theorem 3.2 is a consequence of the following results.

Theorem 5.1. Let K satisfy (2.1) and (3.5), and R be the solution of
(1.2). Suppose there exists a constant matrix R∞ such that (3.6) holds.
If there exists a constant α > 0 such that K obeys (3.8) in Theorem
3.2, then there exist constants β2 > 0 and c2 > 0 such that R obeys
(3.9) of Theorem 3.2.

Theorem 5.2. Let K satisfy (2.1), (3.5) and (3.7), and let R be the
solution of (1.2). Suppose there exists a constant matrix R∞ such that
(3.6) holds. If there exist constants β2 > 0 and c2 > 0 such that R

obeys (3.9) in Theorem 3.2, then there exists a constant α > 0 such
that K obeys (3.8) in Theorem 3.2.

Proof of Theorem 5.1. Since (3.6) holds the inversion formula for the
Laplace Transform of Y is well-defined when ε > 0;

Y (t) = lim
T→∞

1

2πi

∫ ε+iT

ε−iT

Ŷ (z)eztdz.

EJQTDE, 2005 No. 9, p. 8



¿From Lemma 4.3 we know that det[I + F̂ (z)] 6= 0 for Re z ≥ 0 so we
can write

Ŷ (z) = H1(z), Re z ≥ 0,

where

H1(z) = (I + F̂ (z))−1Ĝ(z), Re z ≥ 0.

We begin by showing that

(5.1) Y (t) =
1

2πi

∫
−β2+i∞

−β2−i∞

H1(z)eztdz, t > 0,

for some β2 > 0.
Observe that since det[I + F̂ (0)] 6= 0, H1(0) exists. Using (3.8) and

the Riemann–Lebesgue Lemma we see that K̂(z) → 0 as |z| → ∞ for

Re z ≥ −α, thus we can see from (4.2) that F̂ (z) → 0 as |z| → ∞ for
Re z ≥ −α. Therefore we can find T0 > 0 such that for |Im z| > T0

we have that det[I + F̂ (z)] 6= 0 when Re z ≥ −α, |Im z| > T0. Hence
H1(z) exists when |Im z| > T0 and Re z ≥ −α. Let

D = {z : −
α

2
≤ Re z ≤ 0, |Im z| ≤ T0}

and

c0 = max{Re z : z ∈ D, det[I + F̂ (z)] = 0}.

Since z 7→ (I + F̂ (z)) is analytic on the domain Re z > −α, and its
determinant is a continuous function of its entries then z 7→ det[I +

F̂ (z)] is analytic on the domain Re z > −α. Thus it has at most a finite
number of zeros in the set D, and so c0 < 0. Take a constant β2 > 0
so that β2 < −c0. Consider the integration of the function H1(z)e−zt

around the boundary of the box:

{λ + iτ : −β2 ≤ λ ≤ β2, −T ≤ τ ≤ T}.

Since H1(z) exists and is analytic in this box it follows that the integral
over the boundary is zero, that is:

(∫ β2+iT

β2−iT

+

∫
−β2+iT

β2+iT

+

∫
−β2−iT

−β2+iT

+

∫ β2−iT

−β2−iT

)
H1(z)eztdz = 0.

Our claim will be verified if

lim
T→∞

∫ β2+iT

−β2+iT

H1(z)ezt dz = 0, lim
T→∞

∫ β2−iT

−β2−iT

H1(z)ezt dz = 0.
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Consider ‖H1(z)ezt‖ for z = λ + iT and −β2 ≤ λ ≤ β2: then

‖H1(z)ezt‖ = ‖(I + F̂ (z))−1Ĝ(z)ezt‖

≤ eβ2t‖Ĝ(z)‖‖(I + F̂ (z))−1‖

≤
eβ2t

T
·

(
‖Q‖ +

∥∥∥
(
Q + QA + PK̂ ′(0) + QK̂(0)

)
R∞

∥∥∥

+
‖(PK̂ ′(0) + K̂(0))R∞‖

T
+

‖PK̂(0)R∞‖

T 2

+
‖PK̂(z)R∞‖

T 2
+

‖K̂(z)R∞‖

T

)

¿From the Riemann–Lebesgue Lemma we see that as |T | → ∞, K̂(z) →

0 and F̂ (z) → 0, uniformly for Re z ≥ −α. Thus ‖H1(z)ezt‖ → 0 as
T → ∞ with Re z ≥ −β2. Using the continuity of H1(z)ezt and the
above we can find constant m < ∞ such that

‖H1(z)ezt‖ ≤
m

T
eβ2t

for |Re z| ≤ β2, z = λ + iT , t > 0. Also
∥∥∥∥
∫ β2+iT

−β2+iT

H1(z)eztdz

∥∥∥∥ ≤

∫ β2

−β2

‖H1(λ + iT )e(λ+iT )t‖dλ

≤

∫ β2

−β2

m

T
eβ2tdλ ≤ 2β2

m

T
eβ2t.

Thus
∫ β2+iT

−β2+iT
H1(z)eztdz → 0 as T → ∞. A similar argument shows

that
∫ β2−iT

−β2−iT
H1(z)eztdz → 0 as T → ∞. Thus

∫ β2+i∞

β2−i∞

H1(z)eztdz =

∫
−β2+i∞

−β2−i∞

H1(z)eztdz,

finishing the demonstration of (5.1).
It is necessary to choose an integrable function H2 in order to obtain

(3.9). We define the function H2(z) as follows:

H2(z) = H1(z) − (z − c0)
−1L

=
1

z − c0
·

1

z + 1
· (I + F̂ (z))−1

×
[
(z − c0)(z + 1)Ĝ(z) − (z + 1)(I + F̂ (z))L

]

where

L := Q(I − (I + A + K̂(0))R∞) − PK̂ ′(0)R∞.
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Thus

z2H2(z) =
z

z − c0
·

z

z + 1
· (I + F̂ (z))−1

×
[(

z(z + 1)Ĝ(z) − zL
)
− c0(z + 1)Ĝ(z) − L − (z + 1)F̂ (z)L

]
.

Clearly z
z−c0

and z
z+1

→ 1 as |z| → ∞. As (3.8) holds we know from

the Riemann–Lebesgue lemma that K̂(z) → 0 as |z| → ∞ with Re z ≥

−α thus (I + F̂ (z)) → I also
(
z(z + 1)Ĝ(z) − zL

)
, c0(z + 1)Ĝ(z)

and (z + 1)F̂ (z)L are bounded for Re z ≥ −α. Now we have that
‖z2H2(z)‖ < ∞ as |z| → ∞ with Re z ≥ −β2 that is

sup
τ∈

�
τ 2‖H2(β2 + iτ)‖ < ∞,

consequently ∫
−β2+i∞

−β2−i∞

‖H2(z)‖ds := c.

Therefore we obtain

‖Y (t)‖ ≤
1

2π

∥∥∥
∫

−β2+i∞

−β2−i∞

H1(z)ezt dz
∥∥∥

≤
1

2π

∥∥∥
∫

−β2+i∞

−β2−i∞

H2(z)ezt dz
∥∥∥ +

1

2π

∥∥∥
∫

−β2+i∞

−β2−i∞

L

z − c0
dz

∥∥∥

≤
1

2π
e−β2t

∫
−β2+i∞

−β2−i∞

‖H2(z)‖ dz +
1

2π
‖L‖ec0t

≤ c2e
−β2t,

completing our proof. �

Proof of Theorem 5.2. Note that from our hypothesis Ŷ exists and is
continuous for Re z ≥ −β2 and is analytic for Re z > −β2. Due to (3.5)
and (3.6) so we can apply Proposition 3.4 to get (3.13). We see that

det[R∞ + zŶ (z)] is non-zero at z = 0. From the continuity of Ŷ (z)
at zero there exists an open neighbourhood centred at zero on which
det[R∞ + zŶ (z)] 6= 0. Also det[zI +P ] is non-zero except at zero in an
open neighbourhood centred at zero with radius less than one. Choose
α > 0 such that det[R∞ + zŶ (z)] and det[zI + P ] are non zero for
0 < |Re z| < α. Define the function B as follows

B(z) = (P + zI)−1
[
− z2Q(I − (I + A)(Ŷ (z) − R∞))

+ z(z + 1)PK̂ ′(0)R∞ + (z + 1)(P + zQ)K̂(0)R∞

+ z(z + 1)PK̂(0)Ŷ (z) + z2(z + 1)Ŷ (z)
]
(zŶ (z) + R∞)−1
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for 0 < |Re z| < α and B(0) := K̂(0). The function B has been con-

sructed so that B(z) = K̂(z) for 0 ≤ Re z < α. Hence Proposition 4.4
can be applied to yield Theorem 5.2. �

6. Proof of Theorem 3.3

Theorem 3.3 is a consequence of the following results:

Theorem 6.1. Let K satisfy (2.1) and (3.5) and let f satisfy (2.2).
Suppose that for all x0 there is a constant vector x∞(x0, f) such that
the solution t 7→ x(t; x0, f) of (1.1) satisfies (3.10). If there exists a
constant α > 0 such that statement (i) of Theorem 3.2 holds, and there
exist constants γ > 0 and c3 > 0 such that statement (i) of Theorem
3.3 holds, then there exist constants β3 > 0, independent of x0, and
c4 = c4(x0) > 0, such that statement (ii) of Theorem 3.3 holds.

Theorem 6.2. Let K satisfy (2.1), (3.5) and (3.7) and let f satisfy
(2.2). Suppose that for all x0 there is a constant vector x∞(x0, f) such
that the solution t 7→ x(t; x0, f) of (1.1) satisfies (3.10). If there exist
constants β3 > 0, independent of x0, and c4 = c4(x0) > 0 such that
statement (ii) of Theorem 3.3 holds, then there exists a constant α > 0
such that statement (i) of Theorem 3.2 holds, and moreover there exist
constants γ > 0 and c3 > 0 such that statement (i) of Theorem 3.3
holds.

Remark 6.3. If we impose a weaker condition, that is if (3.12) of Theo-
rem 3.3(ii) only holds for a basis of initial values, then the same result
holds.

Proof of Theorem 6.1. Using (2.2) and (2.5) we have that

x∞ = R∞

(
x0 +

∫
∞

0

f(s) ds

)
,

thus

x(t) − x∞ = R(t)x0 + (R ∗ f)(t) − R∞

(
x0 +

∫
∞

0

f(s) ds

)

= (R(t) − R∞)x0 +

∫ t

0

(R(t − s) − R∞)f(s) ds − R∞f1(t).

Integrating ((R − R∞) ∗ f)(t) by parts we obtain

(6.1) x(t) − x∞ = (R(t) − R∞)x0 − (R(0) − R∞)f1(t)

+ (R(t) − R∞)f1(0) −

∫ t

0

R′(t − s)f1(s) ds − R∞f1(t).

Due to the fact that K obeys (3.8), by Theorem 3.2, it follows that
R − R∞ decays exponentially. We prove in the sequel that R′ decays
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exponentially, f1 also decays exponentially therefore the convolution
of R′ and f1 decays exponentially. By use of the above facts and the
hypothesis (3.11) on f1, we have that each term on the right hand side
of (6.1) decays exponentially, which yields (3.12).

We now show that R′ decays exponentially. We can rewrite the
resolvent equation (1.2) as

(6.2) R′(t) = A(R(t) − R∞) +

∫ t

0

K(t − s)(R(s) − R∞) ds

− K1(t)R∞ +

(
A +

∫
∞

0

K(s)ds

)
R∞.

The first term on the right-hand side of (6.2) decays exponentially since
(3.8) holds. We now provide an argument to show that the second
term decays exponentially; since R(t) − R∞ decays exponentially and
(3.8) holds we can choose µ such that eµtK(t) and eµt(R(t) − R∞) ∈
L1((0,∞), Mn(R)). Because the convolution of two integrable functions
is itself integrable,

eµt

∥∥∥∥
∫ t

0

K(t − s)(R(s) − R∞) ds

∥∥∥∥

=

∥∥∥∥
∫ t

0

eµ(t−s)K(t − s)eµs(R(s) − R∞) ds

∥∥∥∥ ≤ c6,

so that the second term on the right-hand side of (6.2) decays expo-
nentially. Note that

(6.3) c7 :=

∫
∞

0

‖K(s)‖eαsds ≥

∫
∞

t

‖K(s)‖eαsds

≥ eαt

∫
∞

t

‖K(s)‖ds ≥ eαt‖K1(t)‖,

showing that the last term on the right-hand side of (6.2) also decays
exponentially.

Finally we show that (A +
∫
∞

0
K(s) ds))R∞ = 0. Integrating (6.2)

and rearranging the terms yields

−

(
A +

∫
∞

0

K(s) ds

)
R∞t =

∫ t

0

A(R(s) − R∞)ds

+

∫ t

0

{ ∫ s

0

K(s − u)(R(u) − R∞) du − K1(s)R∞

}
ds − (R(t) − R0).

Each term on the right-hand side of the equation is integrable thus
(A +

∫
∞

0
K(s) ds)R∞ = 0. From the above we see that R′ decays

exponentially. �
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Proof of Theorem 6.2. We begin by proving (3.8). Let {ξ1, . . . , ξn} be
the standard basis for R

n. As (3.12) holds for all initial values x0, we
can obtain n + 1 solutions xj(t)j=1,··· ,n+1 of (1.1) by setting

xj(0) = ξj for j = 1, · · · , n, xn+1(0) = 0.

We know that xj(t) approaches xj(∞) exponentially fast. Introduce

sj(t) = xj(t) − xn+1(t),

and notice sj(0) = ξj. Define S(t) in Mn(R) by S = [s1(t), . . . , sn(t)].
Then S(0) = I and

S ′(t) = AS(t) + (K ∗ S)(t), t > 0.

We see that S(t) → S∞ = [s1(∞), . . . , sn(∞)] exponentially fast, if we
put sj(∞) = xj(∞)− xn+1(∞). Theorem 5.2 can be applied to obtain
(3.8). Note that the rate of convergence of K is independent of x0.

Using the above we can now prove (3.11). Choose x0 = 0. Integrating
(1.1) we obtain

x(t) =

∫ t

0

Ax(s) ds +

∫ t

0

(K ∗ x)(s) ds +

∫ t

0

f(s) ds.

By rearranging terms,

x(t) =

∫ t

0

A(x(s) − x∞) ds +

∫ t

0

∫ s

0

K(s − u)(x(u) − x∞) du ds

+

∫ t

0

Ax∞ ds +

∫ t

0

∫ s

0

K(s − u)x∞ du ds +

∫ t

0

f(s) ds.

By changing the order of integration and changing variable, we see that

x(t) − x∞ = −x∞ +

∫ t

0

(
A +

∫ t−u

0

K(v) dv

)
(x(u) − x∞) du

+

∫ t

0

(
A +

∫
∞

0

K(v) dv

)
x∞ du −

∫ t

0

K1(u) du +

∫ t

0

f(s) ds.

It is shown later that (A +
∫
∞

0
K(u) du)x∞ = 0. Hence

x(t) − x∞ = −x∞ +

∫ t

0

(
A +

∫ t−u

0

K(v) dv

)
(x(u) − x∞) du

−

∫ t

0

K1(u) du +

∫ t

0

f(s) ds.
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Allowing t → ∞ we see that

− x∞ = −

∫
∞

0

(
A +

∫
∞

0

K(v) dv

)
(x(u) − x∞) du

+

∫
∞

0

K1(u)x∞ du −

∫
∞

0

f(u) du,

and thus we obtain

x(t) − x∞ = −

(
A +

∫
∞

0

K(v) dv

)∫
∞

t

(x(u) − x∞) du

+

∫
∞

t

K1(u) du− f1(t) −

∫ t

0

K1(t − u)(x(u) − x∞) du,

giving

(6.4) f1(t) =

(
A +

∫
∞

0

K(u) du

)∫
∞

t

(x(s) − x∞) ds −

∫
∞

t

K1(u) du

− (x(t) − x∞) +

∫ t

0

K1(t − u)(x(u) − x∞) du.

¿From hypothesis (3.12) we can now show that f1 decays expo-
nentially. First, as K has been shown to obey (3.8) we see from
(6.3) that

∫
∞

t
‖K1(s)‖ ≤ c8e

−αt, t ≥ 0. By (3.12), (3.8) and the
last estimate, each term on the right hand side of (6.4) decays ex-
ponentially to zero. Note that since K is independent of x0 and
‖x(t) − x∞‖ ≤ c4(0)e−β4t = c4e

−β4t the rate of decay of f1 is inde-
pendent of x0.

Earlier in this proof, we postponed showing that the equality (A +∫
∞

0
K(u)du)x∞ = 0 held. To see this, consider

(6.5) x′(t) = A(x(t) − x∞) +

∫ t

0

K(t − s)(x(s) − x∞) ds

+ f(t) − K1(t) +

(
A +

∫
∞

0

K(s) ds

)
x∞.

Clearly the first four terms on the right-hand side of (6.5) are inte-
grable. Integrating and rearranging terms we obtain

−

(
A +

∫
∞

0

K(s) ds

)
x∞t =

∫ t

0

A(x(s) − x∞) ds − (x(t) − x0)

+

∫ t

0

{∫ s

0

K(s − u)(x(u) − x∞) du + f(s) − K1(s)

}
ds.

Each of the terms on the right-hand side approach a finite limit which
implies

(
A +

∫
∞

0
K(u)du

)
x∞ = 0. �
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